题目内容

【题目】如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,-2).

(1)求△AHO的周长;

(2)求该反比例函数和一次函数的解析式.

【答案】(1)△AHO的周长为12(2) 反比例函数的解析式为y=一次函数的解析式为y=-x+1.

【解析】试题分析: 1)根据正切函数,可得AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案;

2)根据待定系数法,可得函数解析式.

试题解析:(1)由OH=3tan∠AOH=,得

AH=4.即A-43).

由勾股定理,得

AO==5

△AHO的周长=AO+AH+OH=3+4+5=12

2)将A点坐标代入y=k≠0),得

k=-4×3=-12

反比例函数的解析式为y=

y=-2时,-2=,解得x=6,即B6-2).

AB点坐标代入y=ax+b,得

解得

一次函数的解析式为y=-x+1

考点:反比例函数与一次函数的交点问题.

型】解答
束】
23

【题目】如图,点A,B,C表示某旅游景区三个缆车站的位置,线段AB,BC表示连接缆车站的钢缆,已知A,B,C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米,310米,710米,钢缆AB的坡度i1=1∶2,钢缆BC的坡度i2=1∶1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度i是指坡面的铅直高度与水平宽度的比)

【答案】钢缆AC的长度为1 000米.

【解析】试题分析:过点AAE⊥CC′于点E,交BB′于点F,过点BBD⊥CC′于点D,分别求出AECE,利用勾股定理求解AC即可.

试题解析:过点AAE⊥CC′于点E,交BB′于点F,过点BBD⊥CC′于点D

△AFB△BDC△AEC都是直角三角形,四边形AA′B′FBB′C′DBFED都是矩形,

∴BF=BB′-B′F=BB′-AA′=310-110=200

CD=CC′-C′D=CC′-BB′=710-310=400

∵i1=12i2=11

∴AF=2BF=400BD=CD=400

∵EF=BD=400DE=BF=200

∴AE=AF+EF=800CE=CD+DE=600

RtAEC中,AC=(米).

答:钢缆AC的长度是1000米.

练习册系列答案
相关题目

【题目】如图,点A,B,C表示某旅游景区三个缆车站的位置,线段AB,BC表示连接缆车站的钢缆,已知A,B,C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米,310米,710米,钢缆AB的坡度i1=1∶2,钢缆BC的坡度i2=1∶1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度i是指坡面的铅直高度与水平宽度的比)

【答案】钢缆AC的长度为1 000米.

【解析】试题分析:过点AAE⊥CC′于点E,交BB′于点F,过点BBD⊥CC′于点D,分别求出AECE,利用勾股定理求解AC即可.

试题解析:过点AAE⊥CC′于点E,交BB′于点F,过点BBD⊥CC′于点D

△AFB△BDC△AEC都是直角三角形,四边形AA′B′FBB′C′DBFED都是矩形,

∴BF=BB′-B′F=BB′-AA′=310-110=200

CD=CC′-C′D=CC′-BB′=710-310=400

∵i1=12i2=11

∴AF=2BF=400BD=CD=400

∵EF=BD=400DE=BF=200

∴AE=AF+EF=800CE=CD+DE=600

RtAEC中,AC=(米).

答:钢缆AC的长度是1000米.

考点:解直角三角形的应用-坡度坡角问题.

型】解答
束】
24

【题目】如图①,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.

(1)求证:AC平分∠DAB;

(2)若AB=4,B为OE的中点,CF⊥AB,垂足为点F,求CF的长;

(3)如图②,连接OD交AC于点G,若,求sinE的值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网