题目内容

【题目】已知:如图,在△ABC中,∠A=30°,∠B=60°。

(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹)

(2)连接DE,求证:△ADE≌△BDE。

【答案】1)作图见解析;(2)证明见解析.

【解析】(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,再以F、N为圆心,大于FN长为半径画弧,两弧交于点M,过B、M作射线,交AC于D,线段BD就是∠B的平分线。

②分别以A、B为圆心,大于AB长为半径画弧,两弧交于X、Y,过X、Y作直线与AB

交于点E,点E就是AB的中点.

(2)首先根据角平分线的性质可得∠ABD的度数,从而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,即可利用SAS证明△ADE≌△BDE.

解:(1)作图如下:

(2)证明:∵∠ABD=×60°=30°,∠A=30°,

∴∠ABD=∠A。∴AD=BD.

又∵AE=BE,

∴△ADE≌△BDE(SAS).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网