题目内容

【题目】已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.

(1)求点C的坐标;
(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;
(3)若上述抛物线的对称轴与OB交于点D,点P为线段DB上一动点,过P作y轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.

【答案】
(1)解:过点C作CH⊥x轴,垂足为H;

∵在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2,

∴OB=4,OA=2

由折叠的性质知:∠COB=30°,OC=AO=2

∴∠COH=60°,OH= ,CH=3;

∴C点坐标为( ,3)


(2)解:∵抛物线y=ax2+bx(a≠0)经过C( ,3)、A(2 ,0)两点,

解得

∴此抛物线的函数关系式为:y=﹣x2+2 x


(3)解:存在.

∵y=﹣x2+2 x的顶点坐标为( ,3),

即为点C,MP⊥x轴,垂足为N,设PN=t;

∵∠BOA=30°,

∴ON= t,

∴P( t,t);

作PQ⊥CD,垂足为Q,ME⊥CD,垂足为E;

把x= t代入y=﹣x2+2 x,

得y=﹣3t2+6t,

∴M( t,﹣3t2+6t),E( ,﹣3t2+6t),

同理:Q( ,t),D( ,1);

要使四边形CDPM为等腰梯形,只需CE=QD,

即3﹣(﹣3t2+6t)=t﹣1,

解得t= ,t=1(舍去),

∴P点坐标为( ),

∴存在满足条件的P点,使得四边形CDPM为等腰梯形,此时P点坐标为(


【解析】(1)根据直角三角形的性质,求出OA、OB的值,由折叠的性质,得到C点坐标;(2)由抛物线经过C、A两点,由待定系数法求出抛物线的函数关系式;(3)根据抛物线的解析式,求出抛物线的顶点坐标,由∠BOA=30°,得到P点的坐标,求出M、E、Q、D的坐标,根据要使四边形CDPM为等腰梯形,只需CE=QD,求出P点坐标;此题是综合题,难度较大,计算和解方程时需认真仔细.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网