题目内容

如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连结EF、EO,若DE=,∠DPA=45°.

(1)求⊙O的半径;
(2)求图中阴影部分的面积.
(1)2;(2)

试题分析:(1)根据垂径定理得CE的长,再根据已知DE平分AO得CO=AO=OE,解直角三角形求解.
(2)先求出扇形的圆心角,再根据扇形面积和三角形的面积公式计算即可.
试题解析:(1)∵直径AB⊥DE,∴CE=DE=.∵DE平分AO,∴CO=AO=OE.又∵∠OCE=90°,∴sin∠CEO==,∴∠CEO=30°.在Rt△COE中,OE==.∴⊙O的半径为2.
(2)连接OF.在Rt△DCP中,∵∠DPC=45°,∴∠D=90°﹣45°=45°.∴∠EOF=2∠D=90°.∴S扇形OEF=.∵∠EOF=2∠D=90°,OE=OF=2,∴SRtOEF=×OE×OF=2.∴S阴影=S扇形OEF﹣SRtOEF=
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网