题目内容

【题目】如图,正方形ABCD的边长为8cm,E、F、G、H分别是AB、BC、CD、DA上的动点,且AE=BF=CG=DH.

(1)求证:四边形EFGH是正方形
(2)判断直线EG是否经过一个定点,并说明理由
(3)求四边形EFGH面积的最小值.

【答案】
(1)

证明:∵四边形ABCD是正方形,

∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,

∵AE=BF=CG=DH,

∴AH=BE=CF=DG,

在△AEH、△BFE、△CGF和△DHG中,

∴△AEH≌△BFE≌△CGF≌△DHG(SAS),

∴EH=FE=GF=GH,∠AEH=∠BFE,

∴四边形EFGH是菱形,

∵∠BEF+∠BFE=90°,

∴∠BEF+∠AEH=90°,

∴∠HEF=90°,

∴四边形EFGH是正方形


(2)

解:直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由如下:

连接AC、EG,交点为O;如图所示:

∵四边形ABCD是正方形,

∴AB∥CD,

∴∠OAE=∠OCG,

在△AOE和△COG中,

∠OAE=∠OCG

∠AOE=∠COG

AE=CG

∴△AOE≌△COG(AAS),

∴OA=OC,即O为AC的中点,

∵正方形的对角线互相平分,

∴O为对角线AC、BD的交点,即O为正方形的中心


(3)

解:设四边形EFGH面积为S,设BE=xcm,则BF=(8﹣x)cm,

根据勾股定理得:EF2=BE2+BF2=x2+(8﹣x)2

∴S=x2+(8﹣x)2=2(x﹣4)2+32,

∵2>0,

∴S有最小值,

当x=4时,S的最小值=32,

∴四边形EFGH面积的最小值为32cm2


【解析】(1)由正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,证出AH=BE=CF=DG,由SAS证明△AEH≌△BFE≌△CGF≌△DHG,得出EH=FE=GF=GH,∠AEH=∠BFE,证出四边形EFGH是菱形,再证出∠HEF=90°,即可得出结论;
(2)连接AC、EG,交点为O;先证明△AOE≌△COG,得出OA=OC,证出O为对角线AC、BD的交点,即O为正方形的中心;
(3)设四边形EFGH面积为S,BE=xcm,则BF=(8﹣x)cm,由勾股定理得出S=x2+(8﹣x)2=2(x﹣4)2+32,S是x的二次函数,容易得出四边形EFGH面积的最小值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网