题目内容
【题目】如图,在平面直角坐标系中,正方形ABCO的对角线BO在x轴上,若正方形ABCO的边长为4,点B在x负半轴上,反比例函数的图象经过C点.
(1)求该反比例函数的解析式;
(2)若点P是反比例函数上的一点,且△PBO的面积恰好等于正方形ABCO的面积,求点P的坐标.
【答案】(1)反比例函数解析式为y=;(2)点P的坐标为(2,8)或(﹣2,﹣8).
【解析】试题分析:(1)连接AC,交x轴于点D,由四边形ABCO为正方形,得到对角线互相平分且垂直,四条边相等,根据正方形的边长,利用勾股定理求出CD,OD的长,确定出C坐标,代入反比例解析式求出k的值,即可确定出解析式;
(2)分两种情况考虑:若P1在第一象限的反比例函数图象上,连接P1B,P1O,根据△P1BO的面积恰好等于正方形ABCO的面积,利用三角形面积公式求出P1的纵坐标,代入反比例解析式即可确定出P1的坐标;若P2在第三象限反比例图象上,连接OP2,BP2,同理确定出P2坐标即可.
试题解析:解:(1)连接AC,交x轴于点D.∵四边形ABCO为正方形,∴AD=DC=OD=BD,且AC⊥OB.∵正方形ABCO的边长为4,∴DC=OD==4,∴C(﹣4,﹣4),把C坐标代入反比例函数解析式得:k=16,则反比例函数解析式为y=;
(2)∵正方形ABCO的边长为4,∴正方形ABCO的面积为32,分两种情况考虑:
若P1在第一象限的反比例函数图象上,连接P1B,P1O.∵S△P1BO=BO|yP|=S正方形ABCO=32,而OB=CO=8,∴×8×|yP|=32,∴yP1=8,把y=8代入反比例函数解析式得:x=2,此时P1坐标为(2,8);
若P2在第三象限反比例图象上,连接OP2,BP2,同理得到yP2=﹣8,把y=﹣8代入反比例函数解析式得:x=﹣2,此时P2(﹣2,﹣8).
综上所述:点P的坐标为(2,8)或(﹣2,﹣8).