题目内容
【题目】如图,已知长方形ABCD中AB = 8cm,BC = 10cm,在边CD上取一点E,将△ADE折叠,使点D恰好落在BC边上的点F,则CF的长为( )
A. 2cm B. 3cm C. 4cm D. 5cm
【答案】C
【解析】由将△ADE折叠使点D恰好落在BC边上的点F可得Rt△ADE≌Rt△AFE,所以AF=10cm.在Rt△ABF中由勾股定理得:AB2+BF2=AF2,已知AB、AF的长可求出BF的长,进而得到结论.
∵四边形ABCD是矩形,∴AD=BC=10cm,CD=AB=8cm,根据题意得:Rt△ADE≌Rt△AFE,∴AF=10cm.在Rt△ABF中由勾股定理得:AB2+BF2=AF2,即82+BF2=102,∴BF=6cm,∴CF=BC﹣BF=10﹣6=4(cm).
故选C.
练习册系列答案
相关题目
【题目】某城市自来水收费实行阶梯水价,收费标准如下表所示:
月用水量 | 不超过12吨的部分 | 超过12吨的部分且 不超过18吨的部分 | 超过18吨的部分 |
收费标准 | 2元/吨 | 2.5元/吨 | 3元/吨 |
(1)某用户四月份用水量为16吨,需交水费为多少元?
(2)某用户五月份交水费50元,所用水量为多少吨?
(3)某用户六月份用水量为a吨,需要交水费为多少元?