题目内容
【题目】如图,定点A(﹣2,0),动点B在直线y=x上运动,当线段AB最短时,点B的坐标为 .
【答案】(﹣1,﹣1)
【解析】解:过A作AD⊥直线y=x,过D作DE⊥x轴于E,
则∠DOA=∠OAD=∠EDO=∠EDA=45°,
∵A(﹣2,0),
∴OA=2,
∴OE=DE=1,
∴D的坐标为(﹣1,﹣1),
即动点B在直线y=x上运动,当线段AB最短时,点B的坐标为(﹣1,﹣1),
所以答案是:(﹣1,﹣1).
【考点精析】解答此题的关键在于理解正比例函数的图象和性质的相关知识,掌握正比函数图直线,经过一定过原点.K正一三负二四,变化趋势记心间.K正左低右边高,同大同小向爬山.K负左高右边低,一大另小下山峦,以及对等腰三角形的性质的理解,了解等腰三角形的两个底角相等(简称:等边对等角).
练习册系列答案
相关题目
【题目】青山化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料经铁路120km和公路10km运回工厂,制成每吨8000元的产品经铁路110km和公路20km销售到B地.已知铁路的运价为1.2元/(吨·千米),公路的运价为1.5元/(吨·千米),且这两次运输共支出铁路运费124800元,公路运费19500元.
(1)设原料重x吨,产品重y吨,根据题中数量关系填写下表
原料x吨 | 产品y吨 | 合计(元) | |
铁路运费 | 124800 | ||
公路运费 | 19500 |
根据上表列方程组求原料和产品的重量.
(2)这批产品的销售款比原料费与运输费的和多多少元?