题目内容
【题目】如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD的延长线于点F,连接CF.
(1)求证:四边形BCFD是菱形;
(2)若AD=1,BC=2,求BF的长.
【答案】(1)证明见解析(2)2
【解析】
(1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,
∵点E为CD的中点,∴DE=EC,
在△BCE与△FDE中,,
∴△BCE≌△FDE,∴DF=BC,
又∵DF∥BC,∴四边形BCDF为平行四边形,
∵BD=BC,∴四边形BCFD是菱形;
(2)∵四边形BCFD是菱形,∴BD=DF=BC=2,
在Rt△BAD中,AB=,
∵AF=AD+DF=1+2=3,在Rt△BAF中,BF==2.
练习册系列答案
相关题目