题目内容

【题目】如图,△ABC为⊙O的内接三角形,P为BC延长线上一点,∠PAC=∠B,AD为⊙O的直径,过C作CG⊥AD交AD于E,交AB于F,交⊙O于G.
(1)判断直线PA与⊙O的位置关系,并说明理由;
(2)求证:AG2=AFAB;
(3)若⊙O的直径为10,AC=2 ,AB=4 ,求△AFG的面积.

【答案】
(1)解:PA与⊙O相切.理由:

连接CD,

∵AD为⊙O的直径,

∴∠ACD=90°,

∴∠D+∠CAD=90°,

∵∠B=∠D,∠PAC=∠B,

∴∠PAC=∠D,

∴∠PAC+∠CAD=90°,

即DA⊥PA,

∵点A在圆上,

∴PA与⊙O相切


(2)解:证明:如图2,连接BG,

∵AD为⊙O的直径,CG⊥AD,

=

∴∠AGF=∠ABG,

∵∠GAF=∠BAG,

∴△AGF∽△ABG,

∴AG:AB=AF:AG,

∴AG2=AFAB


(3)解:解:如图3,连接BD,

∵AD是直径,

∴∠ABD=90°,

∵AG2=AFAB,AG=AC=2 ,AB=4

∴AF= =

∵CG⊥AD,

∴∠AEF=∠ABD=90°,

∵∠EAF=∠BAD,

∴△AEF∽△ABD,

解得:AE=2,

∴EF= =1,

∵EG= =4,

∴FG=EG﹣EF=4﹣1=3,

∴SAFG= FGAE= ×3×2=3.


【解析】(1)首先连接CD,由AD为⊙O的直径,可得∠ACD=90°,然后由圆周角定理,证得∠B=∠D,由已知∠PAC=∠B,可证得DA⊥PA,继而可证得PA与⊙O相切.(2)首先连接BG,易证得△AFG∽△AGB,然后由相似三角形的对应边成比例,证得结论;(3)首先连接BD,由AG2=AFAB,可求得AF的长,易证得△AEF∽△ABD,即可求得AE的长,继而可求得EF与EG的长,则可求得答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网