题目内容
阅读材料:
已知,如图(1),在面积为S的△ABC中, BC=a,AC="b," AB=c,内切圆O的半径为r.连接OA、OB、OC,△ABC被划分为三个小三角形.
∵
.
∴
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082303353548814036.png)
(1)类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r;
(2)理解应用:如图(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,⊙O1与⊙O2分别为△ABD与△BCD的内切圆,设它们的半径分别为r1和r2,求
的值.
已知,如图(1),在面积为S的△ABC中, BC=a,AC="b," AB=c,内切圆O的半径为r.连接OA、OB、OC,△ABC被划分为三个小三角形.
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230335354562372.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033535472746.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082303353548814036.png)
(1)类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r;
(2)理解应用:如图(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,⊙O1与⊙O2分别为△ABD与△BCD的内切圆,设它们的半径分别为r1和r2,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033535488407.png)
(1)
(2)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033535519886.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033535519629.png)
试题分析:(1)如图,连接OA、OB、OC、OD,则△AOB、△BOC、△COD和△DOA都是以点O为顶点、高都是r的三角形,根据
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033535534955.png)
(2)过点D作DE⊥AB于点E,分别求得AE的长,进而BE 的长,然后利用勾股定理求得BD的长;然后根据
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230335355501110.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230335355661129.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033535488407.png)
试题解析:(1)如图(2),连接OA、OB、OC、OD.···················································1分
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230335355972639.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033535519886.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230335356287944.png)
(2)如图(3),过点D作DE⊥AB于点E,
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230335357531223.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230335357681098.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033535784861.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230335358001123.png)
∵AB∥DC,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230335358151164.png)
又∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230335358312419.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033535846730.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823033535519629.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408230335359408291.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目