题目内容
【题目】如图,在ABCD中,对角线相交于点于点于点F,连结,则下列结论:;;;图中共有四对全等三角形其中正确结论的个数是
A. 4 B. 3 C. 2 D. 1
【答案】B
【解析】分析:①根据平行四边形的性质以及△BCD和ABD的面积相等得出答案;②③根据平行四边形的性质即可得出答案;④根据平行四边形的性质得出全等的三角形.
详解:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,OB=OD,△BCD的面积=△ABD的面积,
∵AE⊥BD于点E,CF⊥BD于点F, ∴CF∥AE,△BCD的面积=BDCF,
△ABD的面积=BDAE,∴CF=AE,①正确;
∴四边形CFAE是平行四边形, ∴EO=FO,(故②正确);
∵OB=OD, ∴DE=BF,③正确;
由以上可得出:△CDF≌△BAE,△CDO≌△BAO,△CDE≌△BAF,
△CFO≌△AEO,△CEO≌△AFO,△ADF≌△CBE,△DOA≌△COB等.(故④错误).
故正确的有3个. 故选:B.
练习册系列答案
相关题目
【题目】将从1开始的连续自然数按图规律排列:规定位于第m行,第n列的自然数10记为(3,2),自然数15记为(4,2)…
列 行 | 第1列 | 第2列 | 第3列 | 第4列 |
第1行 | 1 | 2 | 3 | 4 |
第2行 | 8 | 7 | 6 | 5 |
第3行 | 9 | 10 | 11 | 12 |
第4行 | 16 | 15 | 14 | 13 |
… | … | … | … | … |
第n行 | … | … | … | … |
按此规律,回答下列问题:
(1)记为(6,3)表示的自然数是__________________.
(2)自然数2018记为_________________.
(3)用一个正方形方框在第span>3列和第4列中任意框四个数,这四个数的和能为2018吗?如果能,求出框出的四个数中最小的数;如果不能,请写出理由。