题目内容

【题目】如图,⊙O中,直径CD弦AB于E,AMBC于M,交CD于N,连接AD.

(1)求证:AD=AN;

(2)若AB=8,ON=1,求⊙O的半径.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)先根据圆周角定理得出∠BAD=∠BCD,再由直角三角形的性质得出∠ANE=∠CNM,故可得出∠BCD=∠BAM,由全等三角形的判定定理得出△ANE≌△ADE,故可得出结论;

(2)先根据垂径定理求出AE的长,设NE=x,则OE=x-1,NE=ED=x,r=OD=OE+ED=2x-1

连结AO,则AO=OD=2x-1,在Rt△AOE中根据勾股定理可得出x的值,进而得出结论.

试题解析:

(1)证明:∵CDAB

∴∠CEB=90

∴∠C+∠B=90.

同理∠C+∠CNM=90

∴∠CNM=∠B.

∵∠CNM=∠AND

∴∠AND=∠B

∵弧AC=弧AC

∴∠D=∠B

∴∠AND=∠D

AN=AD

(2)解:设ON的长为,连接OA

AN=AD,CDAB

DE=NE=

OD=OE+ED=

OA=OD.

∴在Rt△OAE

解得 (不合题意,舍去).

OA.

即⊙O的半径为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网