题目内容

【题目】如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC=12cm.
(1)当PA=45cm时,求PC的长;
(2)若∠AOC=120°时,“最佳视角点”P在直线PC上的位置会发生什么变化?此时PC的长是多少?请通过计算说明.(结果精确到0.1cm,可用科学计算器,参考数据: ≈1.414, ≈1.732)

【答案】
(1)解:当PA=45cm时,连结PO.

∵D为AO的中点,PD⊥AO,

∴PO=PA=45cm.

∵BO=24cm,BC=12cm,∠C=90°,

∴OC=OB+BC=36cm,PC= =27cm


(2)解:当∠AOC=120°,过D作DE⊥OC交BO延长线于E,过D作DF⊥PC于F,则四边形DECF是矩形.

在Rt△DOE中,∵∠DOE=60°,DO= AO=12,

∴DE=DOsin60°=6 ,EO= DO=6,

∴FC=DE=6 ,DF=EC=EO+OB+BC=6+24+12=42.

在Rt△PDF中,∵∠PDF=30°,

∴PF=DFtan30°=42× =14

∴PC=PF+FC=14 +6 =20 ≈34.68>27,

∴点P在直线PC上的位置上升了


【解析】(1)连结PO.先由线段垂直平分线的性质得出PO=PA=45cm,则OC=OB+BC=36cm,然后利用勾股定理即可求出PC= =27cm;(2)过D作DE⊥OC交BO延长线于E,过D作DF⊥PC于F,则四边形DECF是矩形.先解Rt△DOE,求出DE=DOsin60°=6 ,EO= DO=6,则FC=DE=6 ,DF=EC=EO+OB+BC=42.再解Rt△PDF,求出PF=DFtan30°=42× =14 ,则PC=PF+FC=14 +6 =20 ≈34.68>27,即可得出结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网