题目内容
【题目】如图,△ABC的两条高线BD,CE相交于点F,已知∠ABC=60°,AB=10,CF=EF,则△ABC的面积为( )
A.20
B.25
C.30
D.40
【答案】A
【解析】解:连接AF延长AF交BC于G.设EF=CF=x, ∵BD、CE是高,
∴AG⊥BC,
∵∠ABC=60°,∠AGB=90°,
∴∠BAG=30°,
在Rt△AEF中,∵EF=x,∠EAF=30°,∴AE= x,
在Rt△BCE中,∵EC=2x,∠CBE=60°,∴BE= x.
∴ x+ x=10,
∴x=2 ,
∴CE=4 ,
∴S△ABC= ABCE= ×10×4 =20 .
故选A.
连接AF延长AF交BC于G.设EF=CF=x,连接AF延长AF交BC于G.设EF=CF=x,因为BD、CE是高,所以AG⊥BC,由∠ABC=60°,∠AGB=90°,推出∠BAG=30°,在Rt△AEF中,由EF=x,∠EAF=30°可得AE= x,在Rt△BCE中,由EC=2x,∠CBE=60°可得BE= x.可得 x+ x=10,解方程即可解决问题.
练习册系列答案
相关题目