题目内容
【题目】已知锐角三角形ABC内接于⊙O(AB>AC),AD⊥BC于点D,BE⊥AC于点E,AD、AE交于点F.
(1)如图1,若⊙O直径为10,AC=8,求BF的长;
(2)如图2,连接OA,若OA=FA,AC=BF,求∠OAD的大小.
【答案】(1)BF=6;(2)∠OAD=30°.
【解析】
(1)如图1中,作⊙O的直径CM,连接AM,BM.利用勾股定理求出AM,证明四边形AMBF是平行四边形即可解决问题;
(2)如图2中,作⊙O的直径CM,连接AM,BM,设AD交CM于J.证明AO⊥CM.推出∠OAD=∠BCM,解直角三角形求出∠BCM即可解决问题.
(1)如图1中,作⊙O的直径CM,连接AM,BM.
∵CM是直径,
∴∠CAM=∠CBM=90°,
∵CM=10,AC=8,
∴AM===6,
∵AD⊥CB,BE⊥AC,
∴∠ADC=∠MBC=90°,∠BEC=∠MAC=90°,
∴AD∥BM,AM∥BE,
∴四边形AMBF是平行四边形,
∴BF=AM=6.
(2)如图2中,作⊙O的直径CM,连接AM,BM,设AD交CM于J.
由(1)可知四边形AMBF是平行四边形,
∴AM=BF,AF=BM
∵AC=BF,
∴AC=AM,
∵∠MAC=90°,MO=OC,
∴AO⊥CM,
∵AD⊥BC,
∴∠AOJ=∠CDJ=90°,
∵∠AJO=∠CJD,
∴∠DCJ=∠JAO,
∵AF=OA,AF=BM,
∴OA=BM,
∴CM=2BM,
∵∠CBM=90°,
∴sin∠BCM==,
∴∠BCM=30°,
∴∠OAD=∠BCM=30°.
练习册系列答案
相关题目