题目内容
【题目】如图,C,D为线段AB上的两点,M,N分别是线段AC,BD的中点.
(1)如果CD=5cm,MN=8cm,求AB的长;
(2)如果AB=a,MN=b,求CD的长.
【答案】(1)线段AB的长为11cm;(2)2b﹣a.
【解析】
(1)先根据M,N分别是线段AC,BD的中点,可得MC=AC,DN=BD,
再根据MC+CD+DN=MN=8cm,可得MC+DN=8﹣5=3cm,进而可得:AC+BD=2MC+2DN=2×3=6cm,所以AB=AC+CD+BD=AC+BD+CD=6+5=11(cm),
(2)根据M,N分别是线段AC,BD的中点,可得CM=AM=AC,BN=DN=BD,
再根据AM+BN=MC+DN=AB﹣MN,可得MC+DN=a﹣b,
进而可得:CD=MN﹣(MC+DN)=b﹣(a﹣b)=2b﹣a.
(1)M,N分别是线段AC,BD的中点,
∴MC=AC,DN=BD,
∵MC+CD+DN=MN=8cm,
∴MC+DN=8﹣5=3cm,
∴AC+BD=2MC+2DN=2×3=6cm,
∴AB=AC+CD+BD=AC+BD+CD=6+5=11(cm),
即线段AB的长为11cm,
(2)M,N分别是线段AC,BD的中点,
∴CM=AM=AC,BN=DN=BD,
∵AM+BN=MC+DN=AB﹣MN,
∴MC+DN=a﹣b,
∴CD=MN﹣(MC+DN)=b﹣(a﹣b)=2b﹣a.
【题目】如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.
6 | a | b | x | -2 | 1 | … |
(1)可求得x=______,第2016个格子中的数为______;
(2)判断:前m个格子中所填整数之和是否可能为2016?若能,求出m的值,若不可能,请说明理由;
(3)如果x,y为前3格子中的任意两个数,那么所有的|x-y|的和可以通过计算|6-a|+|a-6|+|a-b|+|b-a|+|6-b|+|b-6|得到.若x,y为前20格子中的任意两个数,则所有的|a-b|的和为______.