题目内容
【题目】已知反比例函数y=(k为常数,k≠1).
(1)其图象与正比例函数y=x的图象的一个交点为P,若点P的纵坐标是2,求k的值;
(2)若在其图象的每一支上,y随x的增大而减小,求k的取值范围;
(3)若其图象的一支位于第二象限,在这一支上任取两点A(x1、x2)、B(x2、y2),当y1>y2时,试比较x1与x2的大小;
(4)若在其图象上任取一点,向x轴和y轴作垂线,若所得矩形面积为6,求k的值.
【答案】(1)k=5.(2)k>1.(3)x1>x2.(4)k=±6.
【解析】
试题分析:(1)设点P的坐标为(m,2),由点P在正比例函数y=x的图象上可求出m的值,进而得出P点坐标,再根据点P在反比例函数y=的图象上,所以2=,解得k=5;
(2)由于在反比例函数y=图象的每一支上,y随x的增大而减小,故k﹣1>0,求出k的取值范围即可;
(3)反比例函数y=图象的一支位于第二象限,故在该函数图象的每一支上,y随x的增大而增大,所以A(x1,y1)与点B(x2,y2)在该函数的第二象限的图象上,且y1>y2,故可知x1>x2;
(4)利用反比例函数的比例系数的几何意义直接写出答案即可.
解:(1)由题意,设点P的坐标为(m,2)
∵点P在正比例函数y=x的图象上,
∴2=m,即m=2.
∴点P的坐标为(2,2).
∵点P在反比例函数y=的图象上,
∴2=,解得k=5.
(2)∵在反比例函数y=图象的每一支上,y随x的增大而减小,
∴k﹣1>0,解得k>1.
(3)∵反比例函数y=图象的一支位于第二象限,
∴在该函数图象的每一支上,y随x的增大而增大.
∵点A(x1,y1)与点B(x2,y2)在该函数的第二象限的图象上,且y1>y2,
∴x1>x2.
(4)∵在其图象上任取一点,向两坐标轴作垂线,得到的矩形为6,
∴|k|=6,
解得:k=±6.