题目内容
【题目】如图,雨后初睛,李老师在公园散步,看见积水水面上出现阶梯上方树的倒影,于是想利用倒影与物体的对称性测量这颗树的高度,他的方法是:测得树顶的仰角∠1、测量点A到水面平台的垂直高度AB、看到倒影顶端的视线与水面交点C到AB的水平距离BC.再测得梯步斜坡的坡角∠2和长度EF,根据以下数据进行计算,如图,AB=2米,BC=1米,EF=4米,∠1=60°,∠2=45°.已知线段ON和线段OD关于直线OB对称.(以下结果保留根号)
(1)求梯步的高度MO;
(2)求树高MN.
【答案】(1)4米;(2)(14+4)米.
【解析】
(1)作EH⊥OB于H,由四边形MOHE是矩形,解Rt求得EH即可;
(2)设ON=OD=m,作AK⊥ON于K,则四边形AKOB是矩形,,OK=AB=2,想办法构建方程求得m即可.
(1)如图,作EH⊥OB于H.则四边形MOHE是矩形.
∴OM=EH,
在Rt中,
∵∠EHF=90°,EF=4,∠EFH=45°,
∴EH=FH=OM=米.
(2)设ON=OD=m.作AK⊥ON于K.则四边形AKOB是矩形,如图,
AK=BO,OK=AB=2
∵AB∥OD,∴,∴,∴OC=,
∴,
在Rt△AKN中,∵∠1=60°,
∴AK,∴,
∴m=(14+8)米,
∴MN=ON﹣OM=14+8﹣4=(14+4)米.
练习册系列答案
相关题目