题目内容
【题目】如图,O是直线AB上一点,OC为任意一条射线,OD平分∠BOC,OE平分∠AOC.
(1)指出图中∠AOD与∠BOE的补角;
(2)试判断∠COD与∠COE具有怎样的数量关系.并说明理由.
【答案】(1)∠AOD的补角为∠BOD,∠COD;∠BOE的补角为∠AOE,∠COE;
(2)∠COD+∠COE=90,理由参见解析.
【解析】
试题分析:(1)两个角相加等于180度即为互为补角,由互为补角意义,和已知的角平分线即可得出结论;(2)利用平角是180度和角平分线意义即可得出结论.
试题解析:(1)因为∠AOD+∠BOD=180,所以∠AOD的补角为∠BOD,又因为OD平分∠BOC,所以∠COD=∠BOD,所以∠AOD的补角为∠BOD,∠COD;同理因为∠AOE+∠BOE=180,所以∠BOE的补角为∠AOE,又因为OE平分∠AOC,所以∠COE=∠AOE,所以∠BOE的补角为∠AOE,∠COE;(2)∵OD平分∠BOC,OE平分∠AOC,∴∠COE=∠AOC,∠COD=∠BOC, ∴∠COD+∠COE=∠BOC+∠AOC=∠AOB=90,即∠COD与∠COE的数量关系是∠COD+∠COE=90.
练习册系列答案
相关题目