题目内容

【题目】阅读下列材料:

已知:如图1,等边A1A2A3内接于⊙O,点P上的任意一点,连接PA1,PA2,PA3,可证:PA1+PA2=PA3,从而得到:是定值.

(1)以下是小红的一种证明方法,请在方框内将证明过程补充完整;

证明:如图1,作∠PA1M=60°,A1MA2P的延长线于点M.

∵△A1A2A3是等边三角形,

∴∠A3A1A2=60°,

∴∠A3A1P=A2A1M

A3A1=A2A1A1A3P=A1A2P,

∴△A1A3P≌△A1A2M

PA3=MA2=PA2+PM=PA2+PA1

,是定值.

(2)延伸:如图2,把(1)中条件等边A1A2A3改为正方形A1A2A3A4”,其余条件不变,请问:还是定值吗?为什么?

(3)拓展:如图3,把(1)中条件等边A1A2A3改为正五边形A1A2A3A4A5”,其余条件不变,则=  (只写出结果).

【答案】(1)证明见解析;(2)是定值,理由见解析;(3)

【解析】(2)结论:是定值.在A4P上截取AH=A2P,连接HA1.证明PA4=A4+PH=PA2+PA1,同法可证:PA3=PA1+PA2,推出(+1)(PA1+PA2)=PA3+PA4,可得PA1+PA2=(-1)(PA3+PA4),即可解决问题;

(3)结论:则.如图3-1中,延长PA1H,使得A1H=PA2,连接A4H,A4A2,A4A1.由HA4A1≌△PA4A2,可得A4HP是顶角为36°的等腰三角形,推出PH=PA4,即PA1+PA2=PA4,如图3-2中,延长PA5H,使得A5H=PA3.同法可证:A4HP是顶角为108°的等腰三角形,推出PH=PA4,即PA5+PA3=PA4,即可解决问题;

1)如图1,作∠PA1M=60°,A1MA2P的延长线于点M.

∵△A1A2A3是等边三角形,

∴∠A3A1A2=60°,

∴∠A3A1P=A2A1M

A3A1=A2A1A1A3P=A1A2P,

∴△A1A3P≌△A1A2M

PA3=MA2

PM=PA1

PA3=MA2=PA2+PM=PA2+PA1

,是定值.

(2)结论:是定值.

理由:在A4P上截取AH=A2P,连接HA1

∵四边形A1A2A3A4是正方形,

A4A1=A2A1

∵∠A1A4H=A1A2P,A4H=A2P,

∴△A1A4H=A1A2P,

A1H=PA1A4A1H=A2A1P,

∴∠HA1P=A4A1A2=90°

∴△HA1P的等腰直角三角形,

PA4=HA4+PH=PA2+PA1

同法可证:PA3=PA1+PA2

+1)(PA1+PA2)=PA3+PA4

PA1+PA2=(-1)(PA3+PA4),

(3)结论:则

理由:如图3-1中,延长PA1H,使得A1H=PA2,连接A4H,A4A2,A4A1

HA4A1≌△PA4A2,可得A4HP是顶角为36°的等腰三角形,

PH=PA4,即PA1+PA2=PA4

如图3-2中,延长PA5H,使得A5H=PA3

同法可证:A4HP是顶角为108°的等腰三角形,

PH=PA4,即PA5+PA3=PA4

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网