题目内容

【题目】感知:

(1)如图①,在四边形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,可知△ABP∽△PCD.(不要求证明)
(2)探究:如图②,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:△ABP∽△PCD.
(3)拓展:如图③,在△ABC中,点P是边BC的中点,点D、E分别在边AB、AC上.若∠B=∠C=∠DPE=45°,BC=4 ,CE=3,则DE的长为

【答案】
(1)

解:∵∠APD=90°,

∴∠APB+∠DPC=90°,

∵∠B=90°,

∴∠APB+∠BAP=90°,

∴∠BAP=∠DPC,

∵AB∥CD,∠B=90°,

∴∠C=∠B=90°,

∴△ABP∽△DCP


(2)

解:∵∠APC=∠BAP+∠B,∠APC=∠APD+∠CPD,

∴∠BAP+∠B=∠APD+∠CPD.

∵∠B=∠APD,

∴∠BAP=∠CPD.

∵∠B=∠C,

∴△ABP∽△PCD


(3)
【解析】(3)解: 拓展:同探究的方法得出,△BDP∽△CPE,

∵点P是边BC的中点,
∴BP=CP=2
∵CE=3,

∴BD=
∵∠B=∠C=45°,
∴∠A=180°﹣∠B﹣∠C=90°,
即AC⊥BC且AC=BC=4,
∴AD=AB﹣BD= ,AE=AC﹣CE=1,
在Rt△ADE中,DE= =
故答案是:
【考点精析】解答此题的关键在于理解相似三角形的性质的相关知识,掌握对应角相等,对应边成比例的两个三角形叫做相似三角形,以及对相似三角形的判定的理解,了解相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网