题目内容

【题目】我区儿童公园北门处有一座石拱桥,如图,石拱桥的桥顶到水面的距离CD为8cm,拱桥半径OC为5cm,求水面宽AB为多少米?

【答案】解:连接AO, ∵CD=8m,CO=AO=5m,
∴DO=CD﹣OC=3m,
在Rt△AOD中,AD= = =4(m),
∵DO⊥AB,
∴AB=2AD=8m.

【解析】连接AO,根据CD=8m,CO=AO=5m可得DO=CD﹣OC=3m,再根据勾股定理可得AD的长,再根据垂径定理可得AB的长.
【考点精析】本题主要考查了垂径定理的推论的相关知识点,需要掌握推论1:A、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧B、弦的垂直平分线经过圆心,并且平分弦所对的两条弧C、平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;推论2 :圆的两条平行弦所夹的弧相等才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网