题目内容

【题目】正方形ABCD中,将一个直角三角板的直角顶点与点A重合,一条直角边与边BC交于点E(点E不与点B和点C重合),另一条直角边与边CD的延长线交于点F.
(1)如图①,求证:AE=AF;
(2)如图②,此直角三角板有一个角是45°,它的斜边MN与边CD交于G,且点G是斜边MN的中点,连接EG,求证:EG=BE+DG;
(3)在(2)的条件下,如果 = ,那么点G是否一定是边CD的中点?请说明你的理由.

【答案】
(1)解:如图①,∵四边形ABCD是正方形,

∴∠B=∠BAD=∠ADC=∠C=90°,AB=AD.

∵∠EAF=90°,

∴∠EAF=∠BAD,

∴∠EAF﹣∠EAD=∠BAD﹣∠EAD,

∴∠BAE=∠DAF.

在△ABE和△ADF中

∴△ABE≌△ADF(ASA)

∴AE=AF


(2)解:如图②,连接AG,

∵∠MAN=90°,∠M=45°,

∴∠N=∠M=45°,

∴AM=AN.

∵点G是斜边MN的中点,

∴∠EAG=∠NAG=45°.

∴∠EAB+∠DAG=45°.

∵△ABE≌△ADF,

∴∠BAE=∠DAF,AE=AF,

∴∠DAF+∠DAG=45°,

即∠GAF=45°,

∴∠EAG=∠FAG.

在△AGE和AGF中,

∴△AGE≌AGF(SAS),

∴EG=GF.

∵GF=GD+DF,

∴GF=GD+BE,

∴EG=BE+DG


(3)解:G不一定是边CD的中点.

理由:设AB=6k,GF=5k,BE=x,

∴CE=6k﹣x,EG=5k,CF=CD+DF=6k+x,

∴CG=CF﹣GF=k+x,

在Rt△ECG中,由勾股定理,得

(6k﹣x)2+(k+x)2=(5k)2

解得:x1=2k,x2=3k,

∴CG=4k或3k.

∴点G不一定是边CD的中点.


【解析】(1)由正方形的性质可以得出∠B=∠BAD=∠ADC=∠C=90°,AB=AD,由直角三角形的性质∠EAF=∠BAD=90°,就可以得出∠BAE=∠DAF,证明△ABE≌△ADF就可以得出结论;(2)如图2,连结AG,由且点G是斜边MN的中点,△AMN是等腰直角三角形,就可以得出∠EAG=∠NAG=45°,就有∠EAB+∠DAG=45°,由△ABE≌△ADF可以得出∠BAE=∠DAF,AE=AF就可以得出△AGE≌AGF,从而得出结论;(3)设AB=6k,GF=5k,BE=x,就可以得出CE=6k﹣x,EG=5k,CF=CD+DF=6k+x,就有CG=CF﹣GF=k+x,由勾股定理就可以x的值而得出结论.
【考点精析】掌握正方形的性质是解答本题的根本,需要知道正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网