题目内容
【题目】如图1,在△ABC中,AB=BC,点D、E分别在边BC,AC上,连接DE,且DE=DC.
(1)问题发现:若∠ACB=∠ECD=45°,则= .
(2)拓展探究:若∠ACB=∠ECD=30°,将△EDC饶点C按逆时针旋转α度(0°<α<180°),图2是旋转过程中的某一位置,在此过程中的大小有无变化?如果不变,请求出的值,如果变化,请说明理由;
(3)问题解决:若∠ABC=∠EDC=β(0°<β<90°),将△EDC旋转到如图3所示的位置时,则的值为 .(用含β的式子表示)
【答案】(1);(2)不变化,理由详见解析;(3)2cosβ.
【解析】
(1)如图1,过E作EF⊥AB于F,根据等腰三角形的性质得到∠A=∠C=∠DEC=45°,于是得到∠B=∠EDC=90°,推出四边形EFBD是矩形,得到EF=BD,推出△AEF是等腰直角三角形,根据等腰直角三角形的性质得到结论;
(2)根据等腰三角形的性质得到∠ACB=∠CAB=∠ECD=∠CED=30°,根据相似三角形的判定和性质即可得到结论;
(3)根据等腰三角形的性质得到∠ACB=∠CAB=∠ECD=∠CED=β,根据相似三角形的性质得到,即,根据角的和差得到∠ACE=∠BCD,求得△ACE∽△BCD,证得,过点B作BF⊥AC于点F,则AC=2CF,根据相似三角形的性质即可得到结论.
解:(1)如图1,过E作EF⊥AB于F,
∵BA=BC,DE=DC,∠ACB=∠ECD=45°,
∴∠A=∠C=∠DEC=45°,
∴∠B=∠EDC=90°,
∴四边形EFBD是矩形,
∴EF=BD,
∴EF∥BC,
∴△AEF是等腰直角三角形,
∴,
故答案为:;
(2)此过程中的大小有变化,
由题意知,△ABC和△EDC都是等腰三角形,
∴∠ACB=∠CAB=∠ECD=∠CED=30°,
∴△ABC∽△EDC,
∴,即,
又∠ECD+∠ECB=∠ACB+∠ECB,
∴∠ACE=∠BCD,
∴△ACE∽△BCD,
∴,
在△ABC中,如图2,过点B作BF⊥AC于点F,
则AC=2CF,
在Rt△BCF中,CF=BCcos30°=BC,
∴AC=BC.
∴=;
(3)由题意知,△ABC和△EDC都是等腰三角形,且∠ACB=∠ECD=β,
∴∠ACB=∠CAB=∠ECD=∠CED=β,
∴△ABC∽△EDC,
∴,即,
又∠ECD+∠ECB=∠ACB+∠ECB,
∴∠ACE=∠BCD,
∴△ACE∽△BCD,
∴,
在△ABC中,如图3,过点B作BF⊥AC于点F,则AC=2CF,
在Rt△BCF中,CF=BCcosβ,
∴AC=2BCcosβ.
∴=2cosβ,
故答案为2cosβ.