题目内容
【题目】如图,在ABCD中,BE⊥AC,垂足E在CA的延长线上,DF⊥AC,垂足F在AC的延长线上,求证:AE=CF.
【答案】证明:∵四边形ABCD是平行四边形, ∴AB∥CD,AB=CD,
∴∠BAC=∠DCA,
∴180°﹣∠BAC=180°﹣∠DCA,
∴∠EAB=∠FAD,
∵BE⊥AC,DF⊥AC,
∴∠BEA=∠DFC=90°,
在△BEA和△DFC中, ,
∴△BEA≌△DFC(AAS),
∴AE=CF
【解析】由平行四边形的性质得出AB∥CD,AB=CD,由平行线的性质得出得出∠BAC=∠DCA,证出∠EAB=∠FAD,∠BEA=∠DFC=90°,由AAS证明△BEA≌△DFC,即可得出结论.
【考点精析】解答此题的关键在于理解平行四边形的性质的相关知识,掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分.
练习册系列答案
相关题目