题目内容
【题目】如图,矩形ABCD中,AB=14,AD=8,点E是CD的中点,DG平分∠ADC交AB于点G,过点A作AF⊥DG于点F,连接EF,则EF的长为( )
A.3B.4C.5D.6
【答案】C
【解析】
连接CG,由矩形的性质好已知条件可证明EF是△DGC的中位线,在直角三角形GBC中利用勾股定理可求出CG的长,进而可求出EF的长.
解:连接CG,
∵四边形ABCD是矩形,
∴AB∥CD,∠B=90°,AD=BC=8,
∴∠AGD=∠GDC,
∵DG平分∠ADC,
∴∠ADG=∠GDC,
∴∠AGD=∠ADG,
∴AG=AD=8,
∵AF⊥DG于点F,
∴FG=FD,
∵点E是CD的中点,
∴EF是△DGC的中位线,
∴EF=CG,
∵AB=14,
∴GB=6,
∴CG==10,
∴EF=×10=5,
故选:C.
练习册系列答案
相关题目