题目内容
【题目】某校组织全校2000名学生进行了环保知识竞赛,为了解成绩的分布情况,随机抽取了部分学生的成绩(得分取整数,满分为100分),并绘制了频数分布表和频数分布直方图(不完整):
分组 | 频数 | 频率 |
50.5~60.5 | 20 | 0.05 |
60.5~70.5 | 48 | △ |
70.5~80.5 | △ | 0.20 |
80.5~90.5 | 104 | 0.26 |
90.5~100.5 | 148 | △ |
合计 | △ | 1 |
根据所给信息,回答下列问题 :
(1)补全频数分布表;
(2)补全频数分布直方图;
(3)学校将对成绩在 90.5 ~ 100.5 分之间的学生进行奖励,请你估算出全校获奖学生的人数 .
【答案】(1)见解析;(2)见解析;(3)740人
【解析】
(1)先根据第1组的频数和频率求出抽查学生的总人数,再利用频数、频率及样本总数之间的关系分别求得每一个小组的频数与频率即可得到答案;
(2)根据(1)中频数分布表可得70.5~80.5的频数,据此补全图形即可;
(3)用总人数乘以90.5~100.5小组内的频率即可得到获奖人数.
解:(1)抽取的学生总数为20÷0.05=400,
则60.5~70.5的频率为48÷400=0.12,
70.5~80.5的频数为400×0.2=80,
90.5~100.5的频率为148÷400=0.37,
补全频数分布表如下:
分组 | 频数 | 频率 |
50.5~60.5 | 20 | 0.05 |
60.5~70.5 | 48 | 0.12 |
70.5~80.5 | 80 | 0.20 |
80.5~90.5 | 104 | 0.26 |
90.5~100.5 | 148 | 0.37 |
合计 | 400 | 1 |
(2)由(1)中数据补全频数分布直方图如下:
(3)2000×0.37=740(人),
答:估算出全校获奖学生的人数约为740人.
【题目】如图,在四边形ABCD中,AD∥BC,∠ADC=90°,点E是BC边上一动点,联结AE,过点E作AE的垂线交直线CD于点F.已知AD=4cm,CD=2cm,BC=5cm,设BE的长为xcm,CF的长为ycm.
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.
下面是小东的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 |
y/cm | 2.5 | 1.1 | 0 | 0.9 | 1.5 | 1.9 | 2 | 1.9 |
| 0.9 | 0 |
(说明:补全表格时相关数据保留一位小数)
(2)建立直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当BE=CF时,BE的长度约为 cm.