题目内容
【题目】如图所示,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AB于点E.
(1)求证:∠E=∠C;
(2)若⊙O的半径为3,AD=2,试求AE的长;
(3)求△ABC的面积.
【答案】(1)证明见解析;(2)10;(3)
【解析】试题分析:(1)连接OB,利用已知条件和切线的性质证明:OE∥BD,即可证明:∠E=∠C;
(2)根据题意求出AB的长,然后根据平行线分线段定理,可求解;
(3)根据相似三角形的面积比等于相似比的平方可求解.
试题解析:(1)如解图,连接OB,
∵CD为⊙O的直径,
∴∠CBD=∠CBO+∠OBD=90°,
∵AB是⊙O的切线,
∴∠ABO=∠ABD+∠OBD=90°,
∴∠ABD=∠CBO.
∵OB、OC是⊙O的半径,
∴OB=OC,∴∠C=∠CBO.
∵OE∥BD,∴∠E=∠ABD,
∴∠E=∠C;
(2)∵⊙O的半径为3,AD=2,
∴AO=5,∴AB=4.
∵BD∥OE,
∴=,
∴=,
∴BE=6,AE=6+4=10
(3)S△AOE==15,然后根据相似三角形面积比等于相似比的平方可得
S△ABC= S△AOE==
练习册系列答案
相关题目