ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Õý·½ÐÎAOCBµÄ±ß³¤Îª1£¬µãDÔÚxÖáµÄÕý°ëÖáÉÏ£¬ÇÒOD=OB£¬BD½»OCÓÚµãE£®£¨1£©Çó¡ÏBECµÄ¶ÈÊý£»
£¨2£©ÇóµãEµÄ×ø±ê£»
£¨3£©Çó¹ýB£¬O£¬DÈýµãµÄÅ×ÎïÏߵĽâÎöʽ£®£¨¼ÆËã½á¹ûÒªÇó·ÖĸÓÐÀí»¯£®²Î¿¼×ÊÁÏ£º°Ñ·ÖĸÖеĸùºÅ»¯È¥£¬½Ð·ÖĸÓÐÀí»¯£®ÀýÈ磺
¢Ù
2 | ||
|
2
| ||||
|
2
| ||
5 |
¢Ú
1 | ||
|
1¡Á(
| ||||
(
|
2 |
¢Û
1 | ||||
|
| ||||||||
(
|
| ||||
2 |
·ÖÎö£º£¨1£©Èçͼ¿ÉÖª¡ÏCBE=¡ÏOBD=
¡ÏOBC£¬Ò×Çó½â£®
£¨2£©ÀûÓÃÏàËÆÈý½ÇÐεÄÐÔÖÊÇó³öOEµÄÖµ£¬È»ºó¿ÉÇóµãEµÄ×ø±ê£®
£¨3£©Éè¹ýB£®O£®DÈýµãµÄÅ×ÎïÏߵĽâÎöʽΪy=ax2+bx+c£¬°Ñ×ø±ê´úÈë¿ÉµÃ½âÎöʽ£®
1 |
2 |
£¨2£©ÀûÓÃÏàËÆÈý½ÇÐεÄÐÔÖÊÇó³öOEµÄÖµ£¬È»ºó¿ÉÇóµãEµÄ×ø±ê£®
£¨3£©Éè¹ýB£®O£®DÈýµãµÄÅ×ÎïÏߵĽâÎöʽΪy=ax2+bx+c£¬°Ñ×ø±ê´úÈë¿ÉµÃ½âÎöʽ£®
½â´ð£º½â£º£¨1£©¡à¡ÏCBE=¡ÏOBD=
¡ÏOBC=
¡Á45¡ã=22.5¡ã£¬
¡à¡ÏBEC=90¡ã-¡ÏCBE=90¡ã-22.5¡ã=67.5¡ã£»
£¨2£©¡ßBC¡ÎOD£¬
¡à
=
£¬
¡à
=
£¬
½âµÃ£ºEO=2-
£¬
¡àµãEµÄ×ø±êÊÇ£¨0£¬2-
£©£¬
£¨3£©Éè¹ýB¡¢O¡¢DÈýµãµÄÅ×ÎïÏߵĽâÎöʽΪy=ax2+bx+c£¬
¡ßB£¨-1£¬1£©£¬O£¨0£¬0£©£¬D£¨
£¬0£©£¬
¡à
£¬
½âµÃ£¬a=-1+
£¬b=-2+
£¬c=0£¬
ËùÒÔËùÇóµÄÅ×ÎïÏߵĽâÎöʽΪy=£¨-1+
£©x2+£¨-2+
£©x£®
1 |
2 |
1 |
2 |
¡à¡ÏBEC=90¡ã-¡ÏCBE=90¡ã-22.5¡ã=67.5¡ã£»
£¨2£©¡ßBC¡ÎOD£¬
¡à
BC |
DO |
EC |
EO |
¡à
1 | ||
|
1-EO |
EO |
½âµÃ£ºEO=2-
2 |
¡àµãEµÄ×ø±êÊÇ£¨0£¬2-
2 |
£¨3£©Éè¹ýB¡¢O¡¢DÈýµãµÄÅ×ÎïÏߵĽâÎöʽΪy=ax2+bx+c£¬
¡ßB£¨-1£¬1£©£¬O£¨0£¬0£©£¬D£¨
2 |
¡à
|
½âµÃ£¬a=-1+
2 |
2 |
ËùÒÔËùÇóµÄÅ×ÎïÏߵĽâÎöʽΪy=£¨-1+
2 |
2 |
µãÆÀ£º±¾Ì⿼²éµÄÊǶþ´Îº¯ÊýµÄ×ÛºÏÌ⣬ÀûÓôý¶¨ÏµÊý·¨Çó³ö½âÎöʽ£®ÄѶÈÖеȣ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿