题目内容
【题目】已知:如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+3交y轴于点A,交x轴正半轴于点C(3,0),交x轴负半轴于点B(﹣1,0),∠ACB=45°.
(1)求此抛物线的解析式;
(2)点D为线段AC上一点,且AD=2CD,过点D作DE∥y轴,交抛物线一点E,点P为x轴上方抛物线的一点,设点P的横坐标为t,△PDE的面积为s,求s与t之间的函数关系式,并直接写出t的范围;
(3)在(2)的条件下,过点P作PF∥DE交直线AC于点F,是否存在点P,使以点P、F、E、D为顶点的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
【答案】
(1)
解:把B(﹣1,0),C(3,0),代入函数解析式得:
,
解得:
故抛物线解析式为:y=﹣x2+2x+3
(2)
解:设DE与x轴交于点H,
∵DE∥y轴,AD=2CD,
∴ = = ,
∴DH=CH=1,
∴D(2,1),
∵点E在抛物线上,
∴E(2,3),
∵点P为x轴上方抛物线上的一点,设点P的横坐标为t,
∴﹣1<t<3,
∵△PDE的面积为S,
∴ DE|t﹣2|=S,
∴S=|t﹣2|(﹣1<t<3),
即当﹣1<t<2时,S=2﹣t,
当2<t<3时,S=t﹣2
(3)
解:如图所示:设直线AC的解析式为y=kx+b,
∴ ,
解得: ,
∴直线AC的解析式为y=﹣x+3,
假设抛物线上存在点P,使以点P、F、E、D为顶点的四边形为平行四边形,
设点P坐标为(h,﹣h2+2h+3),
∵PF∥DE,
∴PF=DE,
∴F(h,﹣h+3),
∴﹣h2+2h+3﹣(﹣h+3)=2,
∴h2﹣3h+2=0,
∴h1=1,h2=2,
∴抛物线上存在点P,使以点P、F、E、D为顶点的四边形为平行四边形,点P的坐标为(1,4)或(2,3).
【解析】(1)直接利用点B,C坐标,利用待定系数法求出函数解析即可;(2)由AD=2CD,DE∥y轴,得出D,E两点的坐标,根据三角形的面积公式即可得出S与t之间的函数关系式,根据B,C两点坐标直接写出t的取值范围;(3)假设抛物线上存在点P,使以点P、F、E、D为顶点的四边形为平行四边形,求出直线AC的解析式,设出点P坐标,从而得出点F坐标,整理出关于h的方程,求出P点坐标,使以点P、F、E、D为顶点的四边形为平行四边形.
【题目】某商场欲购进果汁饮料和碳酸饮料共50箱,两种饮料每箱进价和售价如下表所示:
饮料 | 果汁饮料 | 碳酸饮料 |
进价(元/箱) | 55 | 36 |
售价(元/箱) | 63 | 42 |
设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为w元(注:总利润=总售价﹣总进价).
(1)求总利润w关于x的函数关系式;
(2)如果购进两种饮料的总费用不超过2000元,那么该商场如何进货才能获利最多?并求出最大利润.