题目内容

【题目】已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C点.
(1)求反比例函数和一次函数解析式;
(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若SABD=3,
求D,E的坐标.

(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.

【答案】
(1)解:点A(﹣1,2)在反比例函数y= 的图象上,

∴m=(﹣1)×2=﹣2,

∴反比例函数的表达式为y=﹣

∵点B(2,n)也在反比例函数的y=﹣ 图象上,

∴n=﹣1,

即B(2,﹣1)

把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得

解得:k=﹣1,b=1,

∴一次函数的表达式为y=﹣x+1,

答:反比例函数的表达式是y=﹣ ,一次函数的表达式是y=﹣x+1;


(2)解:如图1,

连接AF,BF,

∵DE∥AB,

∴SABF=SABD=3(同底等高的两三角形面积相等),

∵直线AB的解析式为y=﹣x+1,

∴C(0,1),

设点F(0,m),

∴AF=1﹣m,

∴SABF=SACF+SBCF= CF×|xA|+ CF×|xB|= (1﹣m)×(1+2)=3,

∴m=﹣1,

∴F(0,﹣1),

∵直线DE的解析式为y=﹣x+1,且DE∥AB,

∴直线DE的解析式为y=﹣x﹣1①.

∵反比例函数的表达式为y=﹣ ②,

联立①②解得,

∴D(﹣2,1),E(1,﹣2);


(3)解:如图2

由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣

设点P(p,2),

∴Q(p,﹣p﹣1),R(p,﹣ ),

PQ=|2+p+1|,QR=|﹣p﹣1+ |,

∵QR=2QP,

∴|﹣p﹣1+ |=2|2+p+1|,

解得,p= 或p=

∴P( ,2)或( ,2)或( ,2)或( ,2).


【解析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;
(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;
(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣ ),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网