题目内容
【题目】如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF= CD,以DE,DF为邻边作矩形DEGF.设AQ=3x.
(1)用关于x的代数式表示BQ,DF.
(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.
(3)在点P的整个运动过程中, ①当AP为何值时,矩形DEGF是正方形?
②作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长(直接写出答案).
【答案】
(1)解:在Rt△ABQ中,
∵AQ:AB=3:4,AQ=3x,
∴AB=4x,
∴BQ=5x,
∵OD⊥m,m⊥l,
∴OD∥l,
∵OB=OQ,
∴ =2x,
∴CD=2x,
∴FD= =3x
(2)解:∵AP=AQ=3x,PC=4,
∴CQ=6x+4,
作OM⊥AQ于点M(如图1),
∴OM∥AB,
∵⊙O是△ABQ的外接圆,∠BAQ=90°,
∴点O是BQ的中点,
∴QM=AM= x
∴OD=MC= ,
∴OE= BQ= ,
∴ED=2x+4,
S矩形DEGF=DFDE=3x(2x+4)=90,
解得:x1=﹣5(舍去),x2=3,
∴AP=3x=9
(3)解:①若矩形DEGF是正方形,则ED=DF,
I.点P在A点的右侧时(如图1)
∴2x+4=3x,解得:x=4,
∴AP=3x=12;
II.点P在A点的左侧时,
当点C在Q右侧,
0<x< 时(如图2),
∵ED=4﹣7x,DF=3x,
∴4﹣7x=3x,解得:x= ,
∴AP= ;
当 ≤x< 时(如图3),
∵ED=4﹣7x,DF=3x,
∴4﹣7x=3x,解得:x= (舍去),
当点C在Q的左侧时,即x≥ (如图4),
DE=7x﹣4,DF=3x,
∴7x﹣4=3x,解得:x=1,
∴AP=3,
综上所述:当AP为12或 或3时,矩形DEGF是正方形;
②连接NQ,由点O到BN的弦心距为l,得NQ=2,
当点N在AB的左侧时(如图5),
过点B作BM⊥EG于点M,
∵GM=x,BM=x,
∴∠GBM=45°,
∴BM∥AQ,
∴AI=AB=4x,
∴IQ=x,
∴NQ= =2,
∴x=2 ,
∴AP=6 ;
当点N在AB的右侧时(如图6),
过点B作BJ⊥GE于点J,
∵GJ=x,BJ=4x,
∴tan∠GBJ= ,
∴AI=16x,∴QI=19x,
∴NQ= =2,
∴x= ,
∴AP= ,
综上所述:AP的长为6 或 .
【解析】(1)由AQ:AB=3:4,AQ=3x,易得AB=4x,由勾股定理得BQ,再由中位线的性质得AH=BH= AB,求得CD,FD;(2)利用(1)的结论,易得CQ的长,作OM⊥AQ于点M(如图1),则OM∥AB,由垂径定理得QM=AM= x,由矩形性质得OD=MC,利用矩形面积,求得x,得出结论;(3)①点P在A点的右侧时(如图1),利用(1)(2)的结论和正方形的性质得2x+4=3x,得AP;点P在A点的左侧时,当点C在Q右侧,0<x< 时(如图2),4﹣7x=3x,解得x,易得AP;当 时(如图3),7﹣4x=3x,得AP;当点C在Q的左侧时,即x≥ (如图4),同理得AP;②连接NQ,由点O到BN的弦心距为l,得NQ=2,当点N在AB的左侧时(如图5),过点B作BM⊥EG于点M,GM=x,BM=x,易得∠GBM=45°,BM∥AQ,易得AI=AB,求得IQ,由NQ得AP;当点N在AB的右侧时(如图6),过点B作BJ⊥GE于点J,由GJ=x,BJ=4x得tan∠GBJ= ,利用(1)(2)中结论得AI=16x,QI=19x,解得x,得AP.
【题目】某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:
笔试 | 面试 | 体能 | |
甲 | 83 | 79 | 90 |
乙 | 85 | 80 | 75 |
丙 | 80 | 90 | 73 |
(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.
(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.
【题目】为进一步缓解城市交通压力,义乌市政府推出公共自行车,公共自行车在任何一个网店都能实现通租通还,某校学生小明统计了周六校门口停车网点各时段的借、还自行车数,以及停车点整点时刻的自行车总数(称为存量)情况,表格中x=1时的y的值表示8:00点时的存量,x=2时的y值表示9:00点时的存量…以此类推,他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.
时段 | x | 还车数 | 借车数 | 存量y |
7:00﹣8:00 | 1 | 7 | 5 | 15 |
8:00﹣9:00 | 2 | 8 | 7 | n |
… | … | … | … | … |
根据所给图表信息,解决下列问题:
(1)m= , 解释m的实际意义:;
(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;
(3)已知10:00﹣11:00这个时段的借车数比还车数的一半还要多2,求此时段的借车数.