题目内容
【题目】如图,在正方形ABCD中,E、F分别是边AB、BC的中点,连接AF、DE相交于点G,连接CG.
(1)求证:AF⊥DE;
(2)求证:CG=CD.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
试题(1)正方形ABCD中,AB=BC,BF=AE,且∠ABF=∠DAE=90°,即可证明△ABF≌△DAE,即可得∠DGA=90°,结论成立.
(2)延长AF交DC延长线于M,证明△ABF≌△MCF,说明△DGM是直角三角形,命题得证.
试题解析:(1)∵四边形ABCD为正方形
∴AB=BC=CD=AD,∠ABF=∠DAE=90°,
又∵E,F分别是边AB.BC的中点
∴AE=AB.BF=
BC
∴AE=BF.
在△ABF与△DAE中,
,
∴△DAE≌△ABF(SAS).
∴∠ADE=∠BAF,
∵∠BAF+∠DAG=90°,
∴∠ADG+∠DAG=90°,
∴∠DGA=90°,即AF⊥DE.
(2)证明:延长AF交DC延长线于M,
∵F为BC中点,
∴CF=FB
又∵DM∥AB,
∴∠M=∠FAB.
在△ABF与△MCF中,
∴△ABF≌△MCF(AAS),
∴AB=CM.
∴AB=CD=CM,
∵△DGM是直角三角形,
∴GC=DM=DC.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目