题目内容
【题目】如图,在△ABC中,已知CA=CB=5,BA=6,点E是线段AB上的动点(不与端点重合),点F是线段AC上的动点,连接CE、EF,若在点E、点F的运动过程中,始终保证∠CEF=∠B.
(1)求证:∠AEF=∠BCE;
(2)当以点C为圆心,以CF为半径的圆与AB相切时,求BE的长;
(3)探究:在点E、F的运动过程中,△CEF可能为等腰三角形吗?若能,求出BE的长;若不能,请说明理由.
【答案】
(1)证明:∵∠B+∠BCE=∠CEA=∠CEF+∠FEA,
∵∠CEF=∠B,
∴∠AEF=∠BCE
(2)解:如图1,
设⊙C与BA切于点M,则CM=CF,CM⊥BA,
∵CA=CB,CM⊥BA∴BM=AM= =3,
Rt△AMC中,AC=5,AM=3,
∴CF=CM=4,
∴AF=1,
∵CA=CB∴∠B=∠C
由(1)知∠AEF=∠BCE
∴△AEF∽△BCE,
∴ ,
设BE长为x,则EA长为6﹣x
∴ ,
解得:x1=1,x2=5,
答:BE的长为1或5
(3)可能.如图2,
①当CE=CF时,∠3=∠2=∠A,
∴EF∥AB,此时E与B重合,与条件矛盾,不成立.
②当CF=EF时,
又∵△AEF∽△BCE,
∴△AEF≌△BCE,
∴AE=BC=5,
∴BE=AB﹣5=1,
③当CF=EF时,∠1=∠2=∠A=∠B,
△FCE∽△CBA,
∴ ,
∴ = = ,
∵△AEF∽△BCE
∴ = =
∴EA= BC= ×5= ,
∴EB=AB﹣ = .
答:当BE的长为1或 时,△CFE为等腰三角形.
【解析】(1)根据三角形的外角的性质即可得到结论;(2)设⊙C与BA切于点M,则CM=CF,CM⊥BA,根据垂径定理得到BM=AM= =3,根据勾股定理得到CF=CM=4,根据相似三角形的性质得到 ,设BE长为x,则EA长为6﹣x即可得到结论;(3)①当CE=CF时推出EF∥AB,此时E与B重合,与条件矛盾,不成立.②当CF=EF时,根据全等三角形的性质得到BE=AB﹣5=1,③当CF=EF时,根据相似三角形的性质即可得到结论.