题目内容
【题目】如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.
(1)OC的长为 ;
(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ= ;
(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t(秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.
【答案】(1)4;(2);(3)点E的坐标为(1,2)、(,)、(4,2).
【解析】分析:(1)过点B作BH⊥OA于H,如图1(1),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.
(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.
(3)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.
详解:(1)过点B作BH⊥OA于H,如图1(1),则有∠BHA=90°=∠COA,∴OC∥BH.
∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.
∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.
∵∠BHA=90°,∠BAO=45°,
∴tan∠BAH==1,∴BH=HA=4,∴OC=BH=4.
故答案为:4.
(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2).
由(1)得:OH=2,BH=4.
∵OC与⊙M相切于N,∴MN⊥OC.
设圆的半径为r,则MN=MB=MD=r.
∵BC⊥OC,OA⊥OC,∴BC∥MN∥OA.
∵BM=DM,∴CN=ON,∴MN=(BC+OD),∴OD=2r﹣2,∴DH==.
在Rt△BHD中,∵∠BHD=90°,∴BD2=BH2+DH2,∴(2r)2=42+(2r﹣4)2.
解得:r=2,∴DH=0,即点D与点H重合,∴BD⊥0A,BD=AD.
∵BD是⊙M的直径,∴∠BGD=90°,即DG⊥AB,∴BG=AG.
∵GF⊥OA,BD⊥OA,∴GF∥BD,∴△AFG∽△ADB,
∴===,∴AF=AD=2,GF=BD=2,∴OF=4,
∴OG===2.
同理可得:OB=2,AB=4,∴BG=AB=2.
设OR=x,则RG=2﹣x.
∵BR⊥OG,∴∠BRO=∠BRG=90°,∴BR2=OB2﹣OR2=BG2﹣RG2,
∴(2)2﹣x2=(2)2﹣(2﹣x)2.
解得:x=,∴BR2=OB2﹣OR2=(2)2﹣()2=,∴BR=.
在Rt△ORB中,sin∠BOR===.
故答案为:.
(3)①当∠BDE=90°时,点D在直线PE上,如图2.
此时DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t. 则有2t=2.
解得:t=1.则OP=CD=DB=1.
∵DE∥OC,∴△BDE∽△BCO,∴==,∴DE=2,∴EP=2,
∴点E的坐标为(1,2).
②当∠BED=90°时,如图3.
∵∠DBE=OBC,∠DEB=∠BCO=90°,∴△DBE∽△OBC,
∴==,∴BE=t.
∵PE∥OC,∴∠OEP=∠BOC.
∵∠OPE=∠BCO=90°,∴△OPE∽△BCO,
∴==
∵OE+BE=OB=2t+t=2.
解得:t=,∴OP=,OE=,∴PE==,
∴点E的坐标为().
③当∠DBE=90°时,如图4.
此时PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.
则有OD=PE,EA==(6﹣t)=6﹣t,
∴BE=BA﹣EA=4﹣(6﹣t)=t﹣2.
∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,
∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.
在Rt△DBE中,cos∠BED==,∴DE=BE,
∴t=t﹣2)=2t﹣4.
解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).
综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(1,2)、()、(4,2).