题目内容

【题目】正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且EDF=45°.将DAE绕点D逆时针旋转90°,得到DCM.

1)求证:EF=FM

2)当AE=1时,求EF的长.

【答案】(1)∵△DAE逆时针旋转90°得到DCM

DE=DM EDM=90°

∴∠EDF + FDM=90°

∵∠EDF=45°

∴∠FDM =EDM=45°

DF= DF

∴△DEF≌△DMF

EF=MF

(2) 设EF=x AE=CM=1

BF=BM-MF=BM-EF=4-x

EB=2

在RtEBF中,由勾股定理得

解之,得 

【解析】(1)由折叠可得DE=DM,EDM为直角,可得出EDF+MDF=90°,由EDF=45°,得到MDF为45°,可得出EDF=MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;

(2)由第一问的全等得到AE=CM=1,正方形的边长为3,用AB-AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM-FM=BM-EF=4-x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网