题目内容

【题目】如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等两部分,与抛物线交于另一点F.点P在直线l上方抛物线上一动点,设点P的横坐标为t

(1)求抛物线的解析式;
(2)当t何值时,△PFE的面积最大?并求最大值的立方根;
(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.

【答案】
(1)

解:由题意可得 ,解得

∴抛物线解析式为y=﹣x2+2x+3


(2)

解:∵A(0,3),D(2,3),

∴BC=AD=2,

∵B(﹣1,0),

∴C(1,0),

∴线段AC的中点为( ),

∵直线l将平行四边形ABCD分割为面积相等两部分,

∴直线l过平行四边形的对称中心,

∵A、D关于对称轴对称,

∴抛物线对称轴为x=1,

∴E(3,0),

设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得 ,解得

∴直线l的解析式为y=﹣ x+

联立直线l和抛物线解析式可得 ,解得

∴F(﹣ ),

如图1,作PH⊥x轴,交l于点M,作FN⊥PH,

∵P点横坐标为t,

∴P(t,﹣t2+2t+3),M(t,﹣ t+ ),

∴PM=﹣t2+2t+3﹣(﹣ t+ )=﹣t2+ t+

∴SPEF=SPFM+SPEM= PMFN+ PMEH= PM(FN+EH)= (﹣t2+ t+ )(3+ )=﹣ (t﹣ )+ ×

∴当t= 时,△PEF的面积最大,其最大值为 ×

∴最大值的立方根为 =


(3)

解:由图可知∠PEA≠90°,

∴只能有∠PAE=90°或∠APE=90°,

①当∠PAE=90°时,如图2,作PG⊥y轴,

∵OA=OE,

∴∠OAE=∠OEA=45°,

∴∠PAG=∠APG=45°,

∴PG=AG,

∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),

②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,

则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,

∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,

∴∠PAQ=∠KPE,且∠PKE=∠PQA,

∴△PKE∽△AQP,

= ,即 = ,即t2﹣t﹣1=0,解得t= 或t= <﹣ (舍去),

综上可知存在满足条件的点P,t的值为1或


【解析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由A、C坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E点坐标,从而可求得直线EF的解析式,作PH⊥x轴,交直线l于点M,作FN⊥PH,则可用t表示出PM的长,从而可表示出△PEF的面积,再利用二次函数的性质可求得其最大值,再求其最大值的立方根即可;(3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网