题目内容
一个多边形的内角和是540°,则这个多边形的对角线共有_______条
已知△ABC的内切圆⊙O与AB,BC,AC分别相切于点D,E,F,若,如图①.
(1)判断△ABC的形状,并证明你的结论;
(2)设AE与DF相交于点M,如图②,AF=2FC=4,求AM的长.
为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)
的绝对值是( )
A. B. 8 C. D.
对于x、y,规定一种新的运算:x@y=ax+by,其中a、b为常数,等式右边是通常的加法和乘法运算,已知2@1=7,(-3)@2=1,则@6=________
甲,乙两个样本,甲的样本方差是0.065,乙的样本方差是0.056,那么样本甲与样本乙的波动大小应是 ( )
A. 甲的波动比乙的大 B. 甲的波动比乙的小
C. 甲与乙的波动相同 D. 不能确定
下列方程组中是二元一次方程组的是 ( )
A. B. C. D.
如图,四边形ABCD的对角线AC、BD相交于点O,已知下列6个条件:①AB∥DC;②AB=DC;③AC=BD;④∠ABC=90°;⑤OA=OC;⑥OB=OD.则不能使四边形ABCD成为矩形的是( )
A. ①②③ B. ②③④ C. ②⑤⑥ D. ④⑤⑥
如右上图,在正方形ABCD中AB=3,,以B为圆心,半径为1画⊙B,点P在⊙B上移动,连接AP,并将AP绕点A逆时针方向旋转 90°至AP′,连接BP′,在点P移动过程中,BP′长的取值范围是______.