题目内容
【题目】阅读下面材料:点A、B在数轴上分别表示有理数a、b,表示A、B两点之间的距离。当A、B两点中有一点在原点时(假设A在原点),如图①,;
当A、B两点都在原点右侧时,如图②,;
当AB两点都在原点左侧时,如图③,;
当AB两点在原点两侧时,如图④,;
请根据上述结论,回答下列问题:
(1)数轴上表示2和5的两点问距离是______,数轴上表示2和-6的两点间距高是_________,数轴上表示-1和3的两点间距离是____________.
(2)数轴上表示x和-1的两点A和B之间的距离可表示为_________,若|AB|=2,则x的值为_____________.
(3)当取最小值时,请写出所有符合条件的x的整数值_______________.
【答案】(1)3,8,4;(2)|x+1|或|x-(-1)|或|-1-x|,1或-3;(3)-2,-1,0,1
【解析】
(1)根据材料中的知识可以得到两点之间的距离就是较大的数与较小的数的差,据此即可求解;
(2)根据材料中的知识,即可直接写出结果;
(3)代数式|x-1|+|x+2|表示数轴上一点到1、-2两点的距离的和,根据两点之间线段最短,进而得出答案.
解:(1)数轴上表示2和5的两点之间的距离是:5-2=3;
数轴上表示2和-6的两点之间的距离是2-(-6)=8,
数轴上表示1和-3的两点之间的距离是1-(-3)=4;
故答案为:3;8;4;
(2)数轴上表示x和-1的两点之间的距离是|x+1|,
|AB|=2,则|x+1|=2,故x=1或-3;
故答案为:|x+1|,1或-3;
(3)若|x+1|+|x-2|取最小值,那么表示x的点M在-1和2之间的线段上,
所以x的整数值是-2,-1,0,1;
故答案为:-2,-1,0,1.
【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x(元/千克) | 50 | 60 | 70 |
销售量y(千克) | 100 | 80 | 60 |
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?
(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.