题目内容
【题目】如图:在四边形ABCD中,A、B、C、D四个点的坐标分别是:(-2,0)、(0,6)、(4,4)、(2,0)现将四边形ABCD先向上平移1个单位,再向左平移2个单位,平移后的四边形是A'B'C′D'
(1)请画出平移后的四边形A'B'C′D'(不写画法),并写出A'、B'、C′、D'四点的坐标.
(2)若四边形内部有一点P的坐标为(a,b)写点P的对应点P′的坐标.
(3)求四边形ABCD的面积.
【答案】(1)图见解析,A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)P′的坐标为:(a-2,b+1);(3)四边形ABCD的面积为22.
【解析】
(1)直接利用平移画出图形,再根据图形写出对应点的坐标进而得出答案;
(2)利用平移规律进而得出对应点坐标的变化规律:向上平移1个单位,纵坐标加1;向左平移2个单位,横坐标减2;
(3)利用四边形ABCD所在的最小矩形面积减去周围三角形面积进而得出答案.
解:(1)如图所示:A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);
(2)若四边形内部有一点P的坐标为(a,b)写点P的对应点P′的坐标为:(a-2,b+1);
(3)四边形ABCD的面积为:6×6-×2×6-×2×4-×2×4=22.
练习册系列答案
相关题目