题目内容

如图甲,已知AB是⊙O的直径,直线l与⊙O相切于点B,直线m垂直AB于点C,交⊙O于P、Q两点.连接AP,过O作ODAP交l于点D,连接AD与m交于点M.
(1)如图乙,当直线m过点O时,求证:M是PO的中点;
(2)如图甲,当直线m不过点O时,M是否仍为PC的中点?证明你的结论.
证明:(1)连接PD,
∵AB是⊙O的直径,直线l与⊙O相切于点B,直线m垂直AB于点C,
∴∠POA=∠DBA=90°,
∵ODAP,
∴∠PAO=∠DOB,
又∵AO=BO,
∴△APO≌△ODB,
∴AP=OD,
∴四边形APDO是平行四边形,
∴M是PO中点;

(2)M仍为PC的中点,理由如下:
∵APOD,
∴∠PAO=∠DOB,又∠PCA=∠DBO=90°,
∴△APC△ODB,
PC
BD
=
AC
BO
①,
又易证△ACM△ABD,
AC
AB
=
MC
BD

∵AB=2OB,
AC
2OB
=
MC
BD

AC
OB
=
2MC
BD
②,
由①②得,
PC
BD
=
2MC
BD

∴即PC=2MC.
M仍为PC的中点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网