题目内容
【题目】如图1,直线与轴交于点,交轴于点,直线与关于轴对称,交轴于点,
(1)求直线的解析式;
(2)过点在外作直线,过点作于点,过点作于点 .求证:
(3)如图2,如果沿轴向右平移,边交轴于点,点是的延长线上的一点,且,与轴交于点 ,在平移的过程中,的长度是否为定值,请说明理由.
【答案】(1);(2)见解析;(3)是,理由见解析
【解析】
(1)先根据对称点的特点得出C点的坐标,然后利用待定系数法即可求出直线BC的解析式;
(2)首先通过等腰直角三角形的性质得出,然后证明,则有,最后利用即可证明;
(3)过点作交轴于点,首先根据平行线的性质和等腰三角形的性质得出,进而可证,则有,最后利用则可证明OP为定值.
解:(1),直线与关于轴对称,交轴于点,
∴点坐标是.
设直线解析式为,
把代入得:
解得:
∴直线BC的解析式为;
(2),
,和是全等的等腰直角三角形,
,
.
又,
,
,
.
在中
,
,
;
(3)为定值,理由如下:
过点作交轴于点,
,
.
,
,
,
.
,
.
,
.
在和中,
,
,
,
为定值.
练习册系列答案
相关题目
【题目】进入六月以来,西瓜出现热卖.佳佳水果超市用760元购进甲、乙两个品种的西瓜,销售完共获利360元,其进价和售价如表:
甲品种 | 乙品种 | |
进价(元/千克) | 1.6 | 1.4 |
售价(元/千克) | 2.4 | 2 |
(1)求佳佳水果超市购进甲、乙两个品种的西瓜各多少千克?
(2)由于销售较好,该超市决定,按进价再购进甲,乙两个品种西瓜,购进乙品种西瓜的重量不变,购进甲品种西瓜的重量是原来的2倍,甲品种西瓜按原价销售,乙品种西瓜让利销售.若两个品种的西瓜售完获利不少于560元,问乙品种西瓜最低售价为多少元?