题目内容

如图,在平面直角坐标系中,Rt△OAB的顶点A的坐标为(9,0),,点C的坐标为(2,0),点P为斜边OB上的一个动点,则PA+PC的最小值为_______________.

试题分析:作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小,求出AM,求出AD,求出DN、CN,根据勾股定理求出CD,即可得出答案.
作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小,
∵Rt△OAB的顶点A的坐标为(9,0),
∴OA=9,
∵tan∠BOA=
∴AB=,∠B=60°,
∴∠AOB=30°,
∴OB=2AB=
由三角形面积公式得:S△OAB=×OA×AB=×OB×AM,即9×=AM,
∴AM=
∴AD=2×=9,
∵∠AMB=90°,∠B=60°,
∴∠BAM=30°,
∵∠BAO=90°,
∴∠OAM=60°,
∵DN⊥OA,
∴∠NDA=30°,
∴AN=AD=,由勾股定理得:DN=
∵C(2,0),
∴CN=9--2=
在Rt△DNC中,由勾股定理得:DC=
即PA+PC的最小值是
故答案为:
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网