题目内容
【题目】如图,于点E,于点F,,求证:.
试将下面的证明过程补充完整填空:
证明:,已知
______
同位角相等,两直线平行,
两直线平行,同旁内角互补,
又已知,
______,同角的补角相等
______内错角相等,两直线平行,
______
【答案】垂直的定义;;BC;两直线平行,同位角相等
【解析】
根据垂线的定义结合平行线的判定定理可得出,由平行线的性质可得出,结合可得出,从而得出。根据平行线的性质即可得出,此题得解.
证明: ,
(垂直的定义),
(同位角相等,两直线平行),
(两直线平行,同旁内角互补),
又 ,
(同角的补角相等),
(内错角相等,两直线平行),
(两直线平行,同位角相等).
故答案为:垂直的定义;;;两直线平行,同位角相等.
练习册系列答案
相关题目
【题目】从2013年1月7日起,中国中东部大部分地区持续出现雾霾天气.某市记者为了了解”雾霾天气的主要原因“,随机调查了该市部分市民,并对调查结果进行整理.绘制了如下尚不完整的统计图表.
组别 | 观点 | 频数(人数) |
A | 大气气压低,空气不流动 | 80 |
B | 地面灰尘大,空气湿度低 | m |
C | 汽车尾气排放 | n |
D | 工厂造成的污染 | 120 |
E | 其他 | 60 |
请根据图表中提供的信息解答下列问题:
(1)填空:m= , n= . 扇形统计图中E组所占的百分比为%;
(2)若该市人口约有100万人,请你估计其中持D组“观点”的市民人数;
(3)若在这次接受调查的市民中,随机抽查一人,则此人持C组“观点”的概率是多少?