题目内容

26、如图①,AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D.
(1)求证:∠DAC=∠BAC;
(2)若把直线EF向上平行移动,如图②,EF交⊙O于G、C两点,若题中的其它条件不变,这时与∠DAC相等的角是哪一个?为什么?
分析:(1)连接OC,根据切线的性质定理以及等角的余角相等即可证明;
(2)构造直径所对的圆周角,根据等弧所对的圆周角相等以及等角的余角相等,发现∠BAC=∠GAD,再根据等式的性质即可证明∠BAG=∠DAC.
解答:解:(1)连接OC;
∵EF切⊙O于点C,
∴OC⊥EF,
∴∠1+∠4=90°;
∵AD⊥EF,
∴∠3+∠4=90;
又∵OA=OC,
∴∠1=∠2,
∴∠2=∠3,
即∠DAC=∠BAC.

(2)∠BAG=∠DAC,理由如下:
连接BC;
∵AB为⊙O的直径,
∴∠BCA=90°,∠B+∠BAC=90°,
∵∠AGD+∠GAD=90°,
又∵∠B=∠AGD,
∴∠BAC=∠GAD;
即∠BAG+∠GAC=∠GAC+∠DAC,
∴∠BAG=∠DAC.
点评:此题运用了切线的性质定理、圆周角定理的推论.注意根据等角的余角相等是证明角相等的一种常用方法.
练习册系列答案
相关题目
34、关于图形变化的探讨:
(1)①例题1.如图1,AB是⊙O的直径,直线l与⊙O有一个公共点C,过A、B分别作l的垂线,垂足为E、F,则EC=CF.
②上题中,当直线l向上平行移动时,与⊙O有了两个交点C1、C2,其它条件不变,如图2,经过推证,我们会得到与原题相应的结论:EC1=C2F.
③把直线1继续向上平行移动,使弦C1C2与AB交于点P(P不与A,B重合).在其它条件不变的情况下,请你在图3的圆中将变化后的图形画出来,标好对应的字母,并写出与①②相应的结论等式.判断你写的结论是否成立,若不成立,说明理由,若成立,给以证明.结论
EC1=C2F
.证明结论成立或说明不成立的理由
(2)①例题2.如图4,BC是⊙O的直径.直线1是过C点的切线.N是⊙O上一点,直线BN交1于点M.过N点的切线交1于点P,则PM2=PC2
②把例题2中的直线1向上平行移动,使之与⊙O相交,且与直线BN交于B、N两点之间.其它条件仍然不变,请你利用图5的圆把变化后的图形画出来,标好相应的字母,并写出与①相应的结论等积式,判断你写的结论是否成立,若不成立,说明理由,若成立,给以证明.结论
PM2=PC1•PC2
.证明结论成立或说明不成立的理由:
(3)总结:请你通过(1)、(2)的事实,用简练的语言,总结出某些几何图形的一个变化规律
在某些几何图形中,平行移动某条直线,有些几何关系保持不变.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网