题目内容
【题目】为响应国家的“节能减排”政策,某厂家开发了一种新型的电动车,如图,它的大灯A射出的光线AB、AC与地面MN的夹角分别为22°和31°,AT⊥MN,垂足为T,大灯照亮地面的宽度BC的长为m.
(1)求BT的长(不考虑其他因素).
(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到电动车完全停下所行驶的距离叫做最小安全距离.某人以20km/h的速度驾驶该车,从做出刹车动作到电动车停止的刹车距离是,请判断该车大灯的设计是否能满足最小安全距离的要求(大灯与前轮前端间水平距离忽略不计),并说明理由.
(参考数据:sin22°≈,tan22°≈,sin31°≈,tan31°≈)
【答案】(1)BT=;(2)该车大灯的设计不能满足最小安全距离的要求,理由见解析.
【解析】
试题分析:(1)在直角△ACT中,根据三角函数的定义,若AT=3x,则CT=5x,在直角△ABT中利用三角函数即可列方程求解;
(2)求出正常人作出反应过程中电动车行驶的路程,加上刹车距离,然后与BT的长进行比较即可.
解:(1)根据题意及图知:∠ACT=31°,∠ABT=22°
∵AT⊥MN
∴∠ATC=90°
在Rt△ACT中,∠ACT=31°
∴tan31°=
可设AT=3x,则CT=5x
在Rt△ABT中,∠ABT=22°
∴tan22°=
即:
解得:
∴,
∴;
(2),
,
∴该车大灯的设计不能满足最小安全距离的要求.
练习册系列答案
相关题目