题目内容

【题目】如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y= 相交于点A(m,3),B(﹣6,n),与x轴交于点C.
(1)求直线y=kx+b(k≠0)的解析式;
(2)若点P在x轴上,且SACP= SBOC , 求点P的坐标(直接写出结果).

【答案】
(1)解:)∵点A(m,3),B(﹣6,n)在双曲线y= 上,

∴m=2,n=﹣1,

∴A(2,3),B(﹣6,﹣1).

将(2,3),B(﹣6,﹣1)带入y=kx+b,

得:

解得

∴直线的解析式为y= x+2


(2)解:

当y= x+2=0时,x=﹣4,

∴点C(﹣4,0).

设点P的坐标为(x,0),

∵SACP= SBOC,A(2,3),B(﹣6,﹣1),

×3|x﹣(﹣4)|= × ×|0﹣(﹣4)|×|﹣1|,即|x+4|=2,

解得:x1=﹣6,x2=﹣2.

∴点P的坐标为(﹣6,0)或(﹣2,0).


【解析】(1)利用反比例函数图象上点的坐标特征可求出点A、B的坐标,再利用待定系数法即可求出直线AB的解析式;(2)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合SACP= SBOC , 即可得出|x+4|=2,解之即可得出结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网