题目内容
【题目】如图,过原点的直线y=k1x和y=k2x与反比例函数y= 的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.
(1)四边形ABCD一定是四边形;(直接填写结果)
(2)四边形ABCD可能是矩形吗?若可能,试求此时k1 , k2之间的关系式;若不能,说明理由;
(3)设P(x1 , y1),Q(x2 , y2)(x2>x1>0)是函数y= 图象上的任意两点,a= ,b= ,试判断a,b的大小关系,并说明理由.
【答案】
(1)平行
(2)
解:∵正比例函数y=k1x(k1>0)与反比例函数y= 的图象在第一象限相交于A,
∴k1x= ,解得x= (因为交于第一象限,所以负根舍去,只保留正根)
将x= 带入y=k1x得y= ,
故A点的坐标为( , )同理则B点坐标为( , ),
又∵OA=OB,
∴ = ,两边平方得: +k1= +k2,
整理后得(k1﹣k2)(k1k2﹣1)=0,
∵k1≠k2,
所以k1k2﹣1=0,即k1k2=1;
(3)
解:∵P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,
∴y1= ,y2= ,
∴a= = = ,
∴a﹣b= ﹣ = = ,
∵x2>x1>0,
∴ >0,x1x2>0,(x1+x2)>0,
∴ >0,
∴a﹣b>0,
∴a>b.
【解析】解:(1)∵直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,
∴OA=OC,OB=OD,
∴四边形ABCD 是平行四边形;
所以答案是:平行;
练习册系列答案
相关题目