题目内容

【题目】如图,在△ABC中,AB=AC,tanACB=2,D在△ABC内部,且AD=CD,ADC=90°,连接BD,若△BCD的面积为10,则AD的长为_____

【答案】5

【解析】

作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示ACAM的长,根据三角形面积表示DH的长,证明ADG≌△CDH(AAS),可得DG=DH=MG=作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示ACAM的长,根据三角形面积表示DH的长,证明ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根据AM=AG+MG,列方程可得结论.,AG=CH=a+,根据AM=AG+MG,列方程可得结论.

DDHBCH,过AAMBCM,过DDGAMG,

CM=a,

AB=AC,

BC=2CM=2a,

tanACB=2,

=2,

AM=2a,

由勾股定理得:AC=a,

SBDCBCDH=10,

2aDH=10,

DH=

∵∠DHM=HMG=MGD=90°,

∴四边形DHMG为矩形,

∴∠HDG=90°=HDC+CDG,DG=HM,DH=MG,

∵∠ADC=90°=ADG+CDG,

∴∠ADG=CDH,

ADGCDH中,

∴△ADG≌△CDH(AAS),

DG=DH=MG=,AG=CH=a+

AM=AG+MG,

2a=a+

a2=20,

RtADC中,AD2+CD2=AC2

AD=CD,

2AD2=5a2=100,

AD=55(舍),

故答案为:5

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网